White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIber gEneration and bundle Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate WM bundles. Our framework allows the transition from one anatomical bundle definition to another with marginal calibrating time. This pipeline is built upon FINTA, CINTA, and GESTA methods that demonstrated how autoencoders can be used successfully for streamline filtering, bundling, and streamline generation in tractography. Our proposed method improves bundling coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase each bundle's spatial coverage while remaining anatomically meaningful. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundling framework
translated by 谷歌翻译
准确的不确定性估计是医学成像社区的关键需求。已经提出了多种方法,所有直接扩展分类不确定性估计技术。独立像素的不确定性估计通常基于神经网络的概率解释,不考虑解剖学的先验知识,因此为许多细分任务提供了次优的结果。因此,我们提出了不确定性预测方法的酥脆图像分割。 Crisp以其核心实现了一种对比的方法来学习一个共同的潜在空间,该方法编码有效分割及其相应图像的分布。我们使用此联合潜在空间将预测与数千个潜在矢量进行比较,并提供解剖学上一致的不确定性图。在涉及不同方式和器官的四个医学图像数据库上进行的综合研究强调了我们方法的优势与最先进的方法相比。
translated by 谷歌翻译
卷积神经网络(CNN)已经证明了它们对2D心脏超声图像进行分割的能力。然而,尽管近期取得了成功的成功,但是已经达到了端舒张和终结图像的观测器内变异性,CNNS仍然难以利用时间信息来在整个周期中提供准确和时间一致的分割图。需要这种持续性来准确描述心功能,这是诊断许多心血管疾病的必要步骤。在本文中,我们提出了一种学习2D +时间长轴心形形状的框架,使得分段序列可以受益于时间和解剖的一致性约束。我们的方法是一种后处理,其作为输入分段的超声心动图序列,其由任何最先进的方法产生,并以两个步骤来处理(i)根据心脏序列的整体动态识别时空不一致。 (ii)纠正不一致。心脏不一致的识别和纠正依赖于受约束的AutoEncoder培训,以学习生理学上可解释的心形状嵌入,在那里我们都可以检测和修复异常。我们在98个来自Camus DataSet的全循环序列上测试了我们的框架,这将与本文一起播放。我们的时间正则化方法不仅可以提高整个序列的分割的准确性,而且还强制执行时间和解剖常量。
translated by 谷歌翻译